Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.285
Filtrar
1.
Data Brief ; 54: 110318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38559818

RESUMO

This article provides experimental and numerical data pertaining to the compressive testing and model calibration for a novel design of 316 L stainless steel equal angle sections (EAS) produced through additive manufacturing, wherein each leg of the EAS is replaced by a wavy surface resembling high order buckling modes of the flat plate. The experimental data were acquired from testing 9 unique stub column sections, in all combinations of 3 different thicknesses and 2 wave magnitudes, with a control section provided for each thickness. The provided numerical data was produced to calibrate a finite element model of the tested sections by varying imperfection magnitudes, and selected values fit strongly to the physical tests. Both physical and numerical tests data herein are given in two parts each, one summary spreadsheet describing section geometry and peak load, and one more detailed spreadsheet providing load-displacement history for all physical sections and selected finite element sections. This data provides insight into finite element analysis of additively manufactured stainless steel sections, making it valuable for the validation of numerical models and stainless steel material behaviour.

2.
Sci Rep ; 14(1): 7794, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565625

RESUMO

In this study, a commercial dental resin was reinforced by SiO2 nanoparticles (NPs) with different concentrations to enhance its mechanical functionality. The material characterization and finite element analysis (FEA) have been performed to evaluate the mechanical properties. Wedge indentation and 3-point bending tests were conducted to assess the mechanical behavior of the prepared nanocomposites. The results revealed that the optimal content of NPs was achieved at 1% SiO2, resulting in a 35% increase in the indentation reaction force. Therefore, the sample containing 1% SiO2 NPs was considered for further tests. The morphology of selected sample was examined using field emission scanning electron microscopy (FE-SEM), revealing the homogeneous dispersion of SiO2 NPs with minimal agglomeration. X-ray diffraction (XRD) was employed to investigate the crystalline structure of the selected sample, indicating no change in the dental resin state upon adding SiO2 NPs. In the second part of the study, a novel approach called iterative FEA, supported by the experiment wedge indentation test, was used to determine the mechanical properties of the 1% SiO2-dental resin. Subsequently, the accurately determined material properties were assigned to a dental crown model to virtually investigate its behavior under oblique loading. The virtual test results demonstrated that most microcracks initiated from the top of the crown and extended through its thickness.


Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Resinas Compostas/química , Análise de Elementos Finitos , Nanopartículas/química , Fenômenos Mecânicos , Teste de Materiais
3.
Spine Deform ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578598

RESUMO

PURPOSE: To evaluate proximal junctional biomechanics of a MLSS relative to traditional pedicle screw fixation at the proximal extent of T10-pelvis posterior instrumentation constructs (T10-p PSF). METHODS: A previously validated three-dimensional osseoligamentous spinopelvic finite element (FE) model was used to compare proximal junctional range-of-motion (ROM), vertebral body stresses, and discal biomechanics between two groups: (1) T10-p with a T10-11 MLSS ("T10-11 MLSS") and (2) T10-p with a traditional T10 pedicle screw ("Traditional T10-PS"). RESULTS: The T10-11 MLSS had a 5% decrease in T9 cortical bone stress compared to Traditional T10-PS. Conversely, the T10 and T11 bone stresses increased by 46% and 98%, respectively, with T10-11 MLSS compared to Traditional T10-PS. Annular stresses and intradiscal pressures (IDP) were similar at T9-T10 between constructs. At the T10-11 disc, T10-11 MLSS decreased annular stresses by 29% and IDP by 48% compared to Traditional T10-PS. Adjacent ROM (T8-9 & T9-10) were similar between T10-11 MLSS and Traditional T10-PS. T10-11 MLSS had 39% greater ROM at T10-11 and 23% less ROM at T11-12 compared to Traditional T10-PS. CONCLUSIONS: In this FE analysis, a T10-11 MLSS at the proximal extent of T10-pelvis posterior instrumentation resulted in increased T10 and T11 cortical bone stresses, decreased discal annular stress and IDP and increased ROM at T10-11, and no change in ROM at the adjacent level. Given the complex and multifactorial nature of proximal junctional kyphosis, these results require additional biomechanical and clinical evaluations to determine the clinical utility of MLSS on the proximal junctions of thoracolumbar posterior instrumented fusions.

4.
J Pharm Bioallied Sci ; 16(Suppl 1): S924-S926, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595403

RESUMO

Objectives: To investigate the outcome of the loading direction and implant tilting on the micromotion and displacement of immediately placed implants with finite element analysis (FEA). Materials and Method: Eight blocks of synthetic bone were created. Eight screw-type implants were inserted, four axially and four slanted, each measuring 11 mm in length and 4.5 mm in diameter. The axial implants and the tilted implants were distally inclined by 30°. The top of the abutment was subjected to 180 N vertical and mesiodistal oblique (45° angle) loads, and the displacement of the abutment was measured. The abutment displacement and micromotion were estimated, and nonlinear finite element models simulating the in vitro experiment were built. In vitro studies and FEA data on abutment displacement were compared, and the reliability of the finite element model was assessed. Result: Under oblique stress, abutment displacement was larger than under axial loading, and it was also greater for tilted implants than for axial implants. The consistency of the in vitro and FEA data was satisfactory. Under vertical stress, the highest micromotion values in the axial and tilted implants were extremely near. Conclusion: Under mesiodistal oblique stress, tilted implants may have a smaller maximum amount of micromotion than axial implants. The loading direction had a significant impact on the highest micromotion values. The abutment displacement values were not reflected in the maximum micromotion measurements.

5.
J Pharm Bioallied Sci ; 16(Suppl 1): S112-S114, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595541

RESUMO

Aim: Present research was done to assess stress distribution in three different taper design preparation of root canal with the help of finite element analysis. Materials and Methods: Lower incisors teeth having single canals that were cleaned and shaped with the help of NeoEndo Flex Titanium (NiTi) rotary file and later three designs were created such as 4%, 6%, and 8% canal preparation taper. Cone beam computed tomography (CBCT) was done for all teeth and subjected to finite element analysis for stresses. The collected data were statistically analyzed. Results: Highest stress was found in the coronal followed by the middle and least in the apical part in all three designs. The highest stress value was found in enamel than dentin (MPa). The highest stress value was found with design 3 (8% taper) followed by designs 2 (6% taper) and 1 (4% taper) for enamel and dentin with either oblique or vertical stress loading. Conclusion: All canals preparation exhibited maximum enamel stress at the coronal load points compared to apical and middle portions. The stress increases with increase in canal tapering.

6.
J Pharm Bioallied Sci ; 16(Suppl 1): S780-S782, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595610

RESUMO

Background: An important aspect of the preparation of the access cavity and biomechanical preparation of the root canal is to safeguard as much of the tooth's framework as possible without affecting access and visibility. Objectives: To compare the impact of the conservative design of access preparation and traditional design of access preparation in association with TruNatomy endodontic instrumentation and WaveOne Gold endodontic instrumentation on resistance to fracture by the design of a cavity for endodontic access using finite element analysis. Materials and Methods: Micro-CT radiographic images of 16 human first permanent molars of the mandible were included in the study to create representative finite element analysis computational models. Results: A significant reduction in load for failure after endodontic preparation was observed in TDAP subcategories as compared to specimens with CDAP. However, the reduction in load for failure was comparable in both endodontic instrument systems within the CDAP and TDAP. Conclusion: A significant reduction in load for failure after endodontic preparation was observed in the traditional design of access preparation subcategories as compared to specimens with the conventional design of access preparation.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38599454

RESUMO

BACKGROUND: The tripod screw configuration has been shown to offer similar stiffness characteristics to a laterally placed plate. However, concern has been raised that the construct may be prone to failure in scenarios where the screw intersects at the fracture line. We performed a finite element analysis to assess potentially ideal and unideal screw placements in the tripod construct among Mason III radial head fractures. METHODS: A 3-dimensional proximal radius model was developed using a computed tomography scan of an adult male radius. The fracture site was simulated with a uniform gap in transverse and sagittal planes creating a Mason Type III fracture pattern comprising 3 fragments. Three configurations were modelled with varying screw intersection points in relation to the radial neck fracture line. A fourth configuration comprising an added transverse interfragmentary screw was also modelled. Loading scenarios included axial and shear forces to simulate physiological conditions. Von mises stress and displacement were used as outcomes for analysis. RESULTS: Some variation can be seen among the tripod configurations, with a marginal tendency for reduced implant stress and greater stiffness when screw intersection is further from the neck fracture region. The construct with an added transverse interfragmentary screws demonstrated greater stiffness (2269N/mm) than an equivalent tripod construct comprising three screws (612N/mm). CONCLUSION: The results from this study demonstrate biomechanical similarity between tripod screw constructs including where screws intersect at the radial neck fracture line. An added fourth screw, positioned transversely across fragments increased construct stiffness in our model.

8.
ACS Biomater Sci Eng ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593061

RESUMO

Bacteria experience substantial physical forces in their natural environment, including forces caused by osmotic pressure, growth in constrained spaces, and fluid shear. The cell envelope is the primary load-carrying structure of bacteria, but the mechanical properties of the cell envelope are poorly understood; reports of Young's modulus of the cell envelope of Escherichia coli range from 2 to 18 MPa. We developed a microfluidic system to apply mechanical loads to hundreds of bacteria at once and demonstrated the utility of the approach for evaluating whole-cell stiffness. Here, we extend this technique to determine Young's modulus of the cell envelope of E. coli and of the pathogens Vibrio cholerae and Staphylococcus aureus. An optimization-based inverse finite element analysis was used to determine the cell envelope Young's modulus from observed deformations. The Young's modulus values of the cell envelope were 2.06 ± 0.04 MPa for E. coli, 0.84 ± 0.02 MPa for E. coli treated with a chemical (A22) known to reduce cell stiffness, 0.12 ± 0.03 MPa for V. cholerae, and 1.52 ± 0.06 MPa for S. aureus (mean ± SD). The microfluidic approach allows examination of hundreds of cells at once and is readily applied to Gram-negative and Gram-positive organisms as well as rod-shaped and cocci cells, allowing further examination of the structural causes behind differences in cell envelope Young's modulus among bacterial species and strains.

9.
Anat Rec (Hoboken) ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588019

RESUMO

The canine of saber-toothed predators represents one of the most specialized dental structures known. Hypotheses about the function of hypertrophied canines range from display and conspecific interaction, soft food processing, to active prey acquisition. Recent research on the ontogenetic timing of skull traits indicates the adult canine can take years to fully erupt, but the consequences of prolonged eruption on inferences of canine functional morphology are missing from current discourse and have not been quantified. Here I evaluate hypotheses about adult canine bending strength and stiffness, respectively, during eruption in the felid Smilodon fatalis. Simulated eruption sequences of three adult canines were generated from specimen models to assess shifting cross-sectional geometry properties, and bending strength and stiffness under laterally directed loads were estimated using finite element analysis. Consistent with beam theory expectations, S. fatalis canine cross-sectional geometry is optimized for increased bending strength with increased erupted height. However, canine cross-sectional geometry changes through eruption exaggerate rather than minimize lateral deflection. Spatial constraint for maximum root length from adjacent sensory structures in the maxilla and the recently identified universal power law are hypothesized to limit the growth capacity of canine anteroposterior length and, consequently, maintenance of bending stiffness through eruption. Instead, the joint presence of the deciduous and adult canines for >50% of the adult canine eruption period effectively increases canine mediolateral width and brings bending strength and stiffness estimates closer to theoretical optima. Similarly prolonged retention of deciduous canines in other sabertooths suggests dual-canine buttressing is a convergently evolved strategy to maximize bending strength and stiffness.

10.
Ann Biomed Eng ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589731

RESUMO

Catheter reaction forces during transcatheter valve replacement (TAVR) may result in injury to the vessel or plaque rupture, triggering distal embolization or thrombosis. In vitro test methods represent the arterial wall using synthetic proxies to determine catheter reaction forces during tracking, but whether they can account for reaction forces within the compliant aortic wall tissue in vivo is unknown. Moreover, the role of plaque inclusions is not well understood. Computational approaches have predicted the impact of TAVR positioning, migration, and leaflet distortion, but have not yet been applied to investigate aortic wall reaction forces and stresses during catheter tracking. In this study, we investigate the role that catheter design and aorta and plaque mechanical properties have on the risk of plaque rupture during TAVR catheter delivery. We report that, for trackability testing, a rigid test model provides a reasonable estimation of the peak reaction forces experienced during catheter tracking within compliant vessels. We investigated the risk of rupture of both the aortic tissue and calcified plaques. We report that there was no risk of diseased aortic tissue rupture based on an accepted aortic tissue stress threshold (4.2 MPa). However, we report that both the aortic and plaque tissue exceed a rupture stress threshold (300 kPa) with and without the presence of stiff and soft plaque inclusions. We also highlight the potential risks associated with shorter catheter tips during catheter tracking and demonstrate that increasing the contact surface will reduce peak contact pressures experienced in the tissue.

11.
J Biomater Sci Polym Ed ; : 1-16, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590076

RESUMO

Microneedles offer minimally invasive, user-friendly, and subcutaneously accessible transdermal drug delivery and have been widely investigated as an effective transdermal delivery system. Ibuprofen is a common anti-inflammatory drug to treat chronic inflammation. It is crucial to develop microneedle patches capable of efficiently delivering ibuprofen through the skin for the effective treatment of arthritis patients requiring repeated medication. In this study, the mechanical properties of a new type of polymer microneedle were studied by finite element analysis, and the experimental results showed that the microneedle could effectively deliver drugs through the skin. In addition, a high ibuprofen-loaded microneedle patch was successfully prepared by micromolding and subjected to evaluation of its infrared spectrum morphology and dissolve degree. The morphology of microneedles was characterized by scanning electron microscopy, and the mechanical properties were assessed using a built linear stretching system. In the in-vitro diffusion cell drug release test, the microneedle released 85.2 ± 1.52% (210 ± 3.7 µg) ibuprofen in the modified Franz diffusion within 4 h, exhibiting a higher drug release compared to other drug delivery methods. This study provides a portable, safe and efficient treatment approach for arthritis patients requiring daily repeated medication.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38590232

RESUMO

Bruxism can be defined as the process of direct contact with teeth and dental materials with an involuntary jaw-tightening movement. In this process, teeth and dental materials can be exposed to various damage mechanisms. This study aims to realize the mechanism of bruxism with finite element analysis and in vitro rotating chewing movement analysis. Within the scope of the study, cp-Ti, Ti-5Zr, and Ti-5Ta materials were subjected to wear tests in the finite element analysis and in vitro rotating chewing movement method under the determined Bruxism chewing test conditions. Test specimens with cylindrical geometry were exposed to a direct every-contact wear mechanism for 30 s under 150 N bruxism chewing bite force. The bruxism chewing cycle continued for 300 min at a frequency of 2 Hz. Microanalysis of the wear surfaces of the samples after the experimental study was carried out with Scanning Electron Microscopy. The results obtained within the scope of this study showed that the Bruxism wear resistance increased by adding zirconium and tantalum to pure titanium material. This result shows that pure titanium material, which is known to have poor wear resistance, can be improved with Zr and Ta alloys. It is clinically important that the success rate in the treatment process increases with the increase in wear resistance. However, the micro-cracks observed in the microstructure may have occurred in the sub-surface, which is a show of the fatigue wear mechanism.

14.
Proc Inst Mech Eng H ; : 9544119241242968, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591839

RESUMO

This study investigated the effect of anterior cruciate ligament (ACL) injury on relative acceleration of the tibia and femur during a number of tests/activities, in order to assess the feasibility of acceleration-based diagnosis of ACL injury using inertial sensors. First, a detailed finite element model of the knee joint was developed to simulate the target tests/activities, and identify those in which a large difference between the maximum acceleration peaks (MAPs) of the healthy and ACL injured knees is likely to be observed. The promising tests/activities were entered in an experimental study, where the relative accelerations of the tibiae and femurs of 20 individuals with unilateral ACL injury, allocated randomly to two groups of conscious and unconscious test conditions, were recorded. Model predictions indicated MAP ratios>1.5 for the ACL-injured to healthy knees, during the anterior drawer, Lachman, and pivot-shift tests, as well as the lunge activity. The experimental MAP results indicated acceptable test-retest reliabilities for all tests (coefficient of variation<0.25), and significant MAP differences (p < 0.05) in the anterior drawer and pivot-shift tests, in both coconscious and unconscious conditions. The individualized MAP results indicated side-to-side differences>2 m/s2 for all subjects during unconscious pivot shift tests, and >0.5 m/s2 for eight cases out of ten during conscious anterior drawer tests. It was concluded that the pivot shift test had a great repeatability and discriminative ability for acceleration-based diagnosis of ACL injury in unconscious condition. For the conscious condition, however, the anterior drawer test was appeared to be most promising.

15.
BMC Oral Health ; 24(1): 425, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582842

RESUMO

BACKGROUND: Clinical scenarios frequently present challenges when patients exhibit asymmetrical mandibular atrophy. The dilemma arises: should we adhere to the conventional All-on-4 technique, or should we contemplate placing vertically oriented implants on the side with sufficient bone mass? This study aims to employ three-dimensional finite element analysis to simulate and explore the biomechanical advantages of each approach. METHODS: A finite element model, derived from computed tomography (CT) data, was utilized to simulate the nonhomogeneous features of the mandible. Three configurations-All-on-4, All-on-5-v and All-on-5-o were studied. Vertical and oblique forces of 200 N were applied unilaterally, and vertical force of 100 N was applied anteriorly to simulate different masticatory mechanisms. The maximum von Mises stresses on the implant and framework were recorded, as well as the maximum equivalent strain in the peri-implant bone. RESULTS: The maximum stress values for all designs were located at the neck of the distal implant, and the maximum strains in the bone tissue were located around the distal implant. The All-on-5-o and All-on-5-v models exhibited reduced stresses and strains compared to All-on-4, highlighting the potential benefits of the additional implant. There were no considerable differences in stresses and strains between the All-on-5-o and All-on-5-v groups. CONCLUSIONS: With the presence of adequate bone volume on one side and severe atrophy of the contralateral bone, while the "All-on-4 concept" is a viable approach, vertical implant placement optimizes the transfer of forces between components and tissues.


Assuntos
Implantes Dentários , Humanos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Estresse Mecânico , Análise do Estresse Dentário/métodos , Prótese Dentária Fixada por Implante , Mandíbula/diagnóstico por imagem , Atrofia
16.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591433

RESUMO

This paper deals with the problem of stress concentration at the weld toe of non-load-carrying-type plate cruciform joints under tension, bending, and shear. Theoretical stress concentration factors were derived using the finite element method. Five of the most important geometrical parameters: the thickness of the main plate and the attachments, the weld throat thickness, the weld toe radius, and the weld face inclination angle were treated as independent variables. For each loading mode-tension, bending, and shear-parametric expression of high accuracy was obtained, covering the range used in real structures for cruciform connections. The maximum percentage error was lower than 2.5% as compared to numerical values. The presented solutions proved to be valid for the toe radius ρ tending to zero.

17.
Materials (Basel) ; 17(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591528

RESUMO

The restoration of endodontically treated teeth is one of the main challenges of restorative dentistry. The structure of the tooth is a complex assembly in which the materials that make it up, enamel and dentin, have very different mechanical behaviors. Therefore, finding alternative replacement materials for dental crowns in the area of restorative care isa highly significant challenge, since materials such as ceramic and zirconia have very different stress load resistance values. The aim of this study is to assess which material, either ceramic or zirconia, optimizes the behavior of a restored tooth under various typical clinical conditions and the masticatory load. A finite element analysis (FEA) framework is developed for this purpose. The 3D model of the restored tooth is input into the FEA software (Ansys Workbench R23)and meshed into tetrahedral elements. The presence of masticatory forces is considered: in particular, vertical, 45° inclined, and horizontal resultant forces of 280 N are applied on five contact points of the occlusal surface. The numerical results show that the maximum stress developed in the restored tooth including a ceramic crown and subject to axial load is about 39.381 MPa, which is rather close to the 62.32 MPa stress computed for the natural tooth; stresses of about 18 MPa are localized at the roots of both crown materials. In the case of the zirconia crown, the stresses are much higher than those in the ceramic crown, except for the 45° load direction, while, for the horizontal loads, the stress peak in the zirconia crown is almost three times as large as its counterpart in the ceramic crown (i.e., 163.24 MPa vs. 56.114 MPa, respectively). Therefore, the zirconia crown exhibits higher stresses than enamel and ceramic that could increase in the case of parafunctions, such as bruxism. The clinician's choice between the two materials should be evaluated based on the patient's medical condition.

18.
Materials (Basel) ; 17(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591566

RESUMO

The protective and preservative role of apple skin in maintaining the integrity of the fruit is well-known, with its mechanical behaviour playing a pivotal role in determining fruit storage capacity. This study employs a combination of experimental and numerical methodologies, specifically utilising the digital image correlation (DIC) technique. A specially devised inverse strategy is applied to evaluate the mechanical behaviour of apple skin under uniaxial tensile loading. Three apple cultivars were tested in this work: Malus domestica Starking Delicious, Malus pumila Rennet, and Malus domestica Golden Delicious. Stress-strain curves were reconstructed, revealing distinct variations in the mechanical responses among these cultivars. Yeoh's hyperelastic model was fitted to the experimental data to identify the coefficients capable of reproducing the non-linear deformation. The results suggest that apple skin varies significantly in composition and structure among the tested cultivars, as evidenced by differences in elastic properties and non-linear behaviour. These differences can significantly affect how fruit is handled, stored, and transported. Thus, the insights resulting from this research enable the development of mathematical models based on the mechanical behaviour of apple tissue, constituting important data for improvements in the economics of the agri-food industry.

19.
Materials (Basel) ; 17(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591663

RESUMO

The stress distribution in prestressed filament wound components plays a crucial role in determining the quality of these components during their operational lifespan. This article proposes a physical model to analyze the stress and deformation of prestressed wound composite components with arch-shaped sections. Drawing upon the principles of beam theory, we delve into the analysis of prestressed wound components with metal liners featuring arch-shaped sections. Our investigation revealed a noteworthy phenomenon termed the "additional bending moment effect" within prestressed wound components with arch-shaped sections. Furthermore, this study establishes a relationship between this additional bending moment and the external pressure. In addition, a 3D finite element (FE) model for prestressed wound components with arch-shaped sections incorporating metal liners was developed. The model's accuracy was validated through a comparison with prestressed wound experiments, showcasing an error margin of less than 2%. In comparison with prestressed wound components with circular cross-sections under identical load and dimensional parameters, it was observed that prestressed wound components with arch-shaped sections exhibit stress distributions in the arc segments akin to their circular counterparts, with differences not exceeding 5%. Notably, when the ratio of the straight segment length to the inner diameter of the arc segment inner is less than 4, the deformation on the symmetric plane of the arc segment in an arch-shaped component can be effectively considered as the summation of deformations in equivalent-sized arc and straight segments under identical loading conditions. This yields an equivalent physical model and a streamlined analysis and design methodology for describing the deformation characteristics of prestressed wound components with arch-shaped sections.

20.
J Prosthodont Res ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38644231

RESUMO

PURPOSE: Based on a self-controlled case, this study evaluated the finite element analysis (FEA) results of a single missing molar with wide mesiodistal length (MDL) restored by a single or double implant-supported crown. METHODS: A case of a missing bilateral mandibular first molar with wide MDL was restored using a single or double implant-supported crown. The implant survival and peri-implant bone were compared. FEA was conducted in coordination with the case using eight models with different MDLs (12, 13, 14, and 15 mm). Von Mises stress was calculated in the FEA to evaluate the biomechanical responses of the implants under increasing vertical and lateral loading, including the stress values of the implant, abutment, screw, crown, and cortical bone. RESULTS: The restorations on the left and right sides supported by double implants have been used for 6 and 12 years, respectively, and so far have shown excellent osseointegration radiographically.The von Mises stress calculated in the FEA showed that when the MDL was >14 mm, both the bone and prosthetic components bore more stress in the single implant-supported strategy. The strength was 188.62-201.37 MPa and 201.85-215.9 MPa when the MDL was 14 mm and 15 mm, respectively, which significantly exceeded the allowable yield stress (180 MPa). CONCLUSIONS: Compared with the single implant-supported crown, the double implant-supported crown reduced peri-implant bone stress and produced a more appropriate stress transfer model at the implant-bone interface when the MDL of the single missing molar was ≥14 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...